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We compute numerically the zero-temperature defect energy �E of the vector spin glass in the limit of an
infinite number of spin components m, for a range of dimensions 2�d�5. Fitting to �E�L�, where L is the
system size, we obtain: ��−1.54 �d=2�, ��−1.04 �d=3�, ��−0.67 �d=4�, and ��−0.37 �d=5�. These results
show that the lower critical dimension dl �the dimension where � changes sign� is significantly higher for m
=� than for finite m �where 2�dl�3�.
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I. INTRODUCTION

There has recently �1–3� been interest in spin glasses
wherein the number of spin components, m, is infinite, be-
cause this limit provides some simplifications compared with
Ising �m=1�, XY �m=2�, or Heisenberg �m=3� models. For
example, in mean field theory �i.e., for the infinite range
model� there is no “replica symmetry breaking” �4�, so that
the ordered state is characterized by a single order parameter
q, rather than by an infinite number of order parameters �en-
capsulated in a function q�x�� that are needed �5� for finite m.
In addition, there are special numerical techniques �1–3,6,7�
which can be used to study finite-range m=� spin glasses in
which the �finite� sample is solved exactly without the statis-
tical errors and equilibration problems inherent in the Monte
Carlo methods used for finite m.

There are, however, significant differences between Ising,
XY, and Heisenberg spin glasses, on the one hand, and m
=� spin glasses on the other. In the Ising spin glass in three
dimensions there is clearly a finite temperature transition �8�,
and we have argued �9� that the same is true for XY and
Heisenberg spins, although the latter is still somewhat con-
troversial �see, e.g., Refs. �10–12��. Hence, for m=1, 2, and 3
the lower critical dimension dl, below which Tc is zero, is
less than 3 �in fact 2�dl�3�. However, for m=�, one finds
�3,7� Tc=0 in three dimensions, so that dl must be greater
than 3 in this case. In fact, Viana �13� makes the surprising
claim that dl=8 for m=�, by attempting to sum up the per-
turbation expansion. Curiously, the upper critical dimension
�above which the critical exponents have mean field values�
is also predicted �14� to be du=8, which is again different
from the value for finite m where du=6.

In this paper, we attempt to determine the lower critical
dimension of the m=� spin glass by computing the zero-
temperature “defect energy” �E, for a range of dimensions,
2�d�5. The defect energy is the characteristic energy
change when the boundary conditions are changed from pe-
riodic �say� to antiperiodic �15–17�. It is expected that

�E � L�, �1�

where L is the system size and � is a “stiffness exponent.” If
��0 then the system is stiff on large length scales so that

one expects Tc�0, whereas if ��0 then it costs very little
energy to break up the ground state configuration at large
scales, so that presumably Tc=0. Hence, dl is the dimension
where �=0. For the case in which ��0, so that Tc=0, the
correlation length � diverges as T→0 like ��T−	, and stan-
dard scaling arguments �15,16� then show that 	=−1/�.

Our main result is that ��0 for the full range of dimen-
sions �2�d�5� that we are able to study, showing that dl is
significantly greater than 5, i.e., much larger than for finite
m.

In Sec. II we discuss the models and numerical implemen-
tation. In Sec. III we discuss our results from simulation in
two to five dimensions. We give our conclusions in Sec. IV.

II. MODEL AND METHOD

We take the Edwards-Anderson �18� Hamiltonian

H = − �
�i,j	

JijSi · S j , �2�

where the spins Si �i=1, . . . ,N� are classical vectors with m
components and normalized to length m1/2; i.e., Si

2=m. The
summation is over nearest-neighbor pairs. The interactions
Jij connect nearest neighbors and are independent random
variables with a Gaussian distribution with zero mean and
standard deviation of unity.

At finite temperature and for m=� the spin-spin correla-
tion functions

Cij 

1

m
�Si · S j	 , �3�

are obtained from the following set of equations �1–3,6,7�:

T−1Cij = �A−1�ij , �4�

where

Aij = Hi
ij − Jij . �5�

Here T is the temperature and the Hi �i=1, . . . ,N=Ld� are
Lagrange multipliers enforcing the normalization of the
spins:

Cii = 1, �i = 1,2, . . . ,N� . �6�

To proceed, one solves the N equations �Eq. �6�� to obtain the
Hi, and then determines the Cij from Eqs. �4� and �5�.
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At zero temperature, Eqs. �4� and Eq. �5� are no longer
well defined. However, since there are no thermal fluctua-
tions, each spin lies parallel to its local field:

Si = Hi
−1�

j

JijS j . �7�

Remarkably, it was shown by Hastings �1� that these local
fields are precisely the zero temperature limit of the Hi in Eq.
�5�. Another interesting result found by Hastings is that the
number of independent spin components m0 used to form the
ground state satisfies a bound m0��2N. By independent, we
mean that we can always define coordinates for the spins
such that the projections of the spins are only nonzero for m0
directions and no spin components are found in remaining
m−m0 directions. Furthermore, it is found numerically that

�m0�av � N�, �m0 � m� , �8�

where �¯�av denotes an average over disorder, and the val-
ues of � we find for dimensions between 2 and 5 are given in
Table I.

We now see that to study the m→� limit, we simply need
that m should be greater than m0. Since m0 is the number of
zero eigenvalues of a large matrix �N�N� for N=Ld, it is
computationally intensive to determine m0 for large L and d.

In practice, we can determine �m0�av from a smaller range of
sizes and fit to Eq. �8�. This allows us to extrapolate the
value of �m0�av to larger sizes. We then choose m to be sig-
nificantly greater than �m0�av for all L. The values of m used
in the calculations are shown in Table II. Note some toler-
ance is required because the precise value of m0 varies from
sample to sample.

To find the ground state, we use a “spin-quench” method
�7�. Firstly, the local field on Si is computed via

Hi =
1

m1/2��
j

JijS j� . �9�

Next we set Si according to Eq. �7�. This procedure is ap-
plied to each spin of the lattice sequentially, and then iterated
to convergence. Our convergence criterion is that the magni-
tude of the change in each spin is less than about 10−7. For
finite m, this method does not guarantee the ground state as

TABLE II. Number of spin components used.

L

Number of spin components, m

d=2 d=3 d=4 d=5

4 4 6 10 14

5 — 10 14 20

6 — 10 14 27

7 — 10 17 35

8 — 10 19 —

10 6 — 25 —

12 — 14 31 —

16 — 18 — —

20 8 — — —

24 — 25 — —

32 10 — — —

64 14 — — —

128 19 — — —

TABLE III. Number of samples used in the defect energy
calculations.

L

Number of samples, Nsamp

d=2 d=3 d=4 d=5

4 1000 1000 1000 1000

5 — 1000 1000 2005

6 — 1000 1000 2098

7 — 1000 1000 1943

8 — 1000 1115 —

10 1000 — 1317 —

12 — 1000 1042 —

16 — 1105 — —

20 1000 — — —

24 — 1792 — —

32 1000 — — —

64 878 — — —

128 547 — — —

FIG. 1. d=2: graph of �E against L with �=−1.54.

TABLE I. Estimates of � and �=−1/	. The values of 	 are
compared to estimates from finite temperature simulations �3� and a
previous calculation �7� at T=0.

d � � 	=−1/� 	 �Ref. �3�� 	 �Ref. �7��

2 0.29 −1.54±0.02 0.65±0.01 0.65±0.05 0.65±0.02

3 0.33 −1.04±0.02 0.96±0.02 1.23±0.13 1.01±0.02

4 0.35 −0.67±0.04 1.49±0.09 — 1.5±0.1

5 0.37 −0.37±0.07 2.70±0.51 — —
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there are many solutions to Eq. �7�. However, it works in the
m→� limit because there is a unique solution �19� in that
case. Since there is no change in the ground state for m
�m0, the solution is expected to be unique provided this
condition is satisfied.

To determine the defect energy �E, we first find the
ground-state energy with periodic boundary conditions �Ep�
for a given set of bonds. Next, we reverse the Ld−1 bonds that
wrap around the system in one direction �x say�; i.e., the
bonds that connect sites with x=1 to those with x=L. We
then obtain the ground-state energy �Ea� for these “antiperi-
odic” boundary conditions. On average, neither periodic or
antiperiodic boundary conditions is preferred, so that we av-
erage the absolute value of Ep−Ea over many different con-
figurations of bonds; i.e., the defect energy is defined to be

�E = �Ep − Ea�av. �10�

We expect that �E scales with L according to Eq. �1�.

III. RESULTS

We have performed simulations for dimensions d=2, 3, 4,
and 5. The number of samples for each size and dimension is
presented in Table III. The defect energies for different di-

mensions are plotted in Figs. 1, 2, 3, and 4 together with the
fit to Eq. �1�. To reduce finite size effects when doing the fits,
for d=2 we omit the two smallest sizes �L=4 and 10�, and
for higher d we just omit the smallest size �L=4�.

The exponent � thus obtained is shown in Table I together
with that obtained from previous calculations. The results for
d=2, 3, and 4 agree well with those of Ref. �7�, though we
have better statistics than in that work and cover a larger
range of sizes �128, 24, and 12 as opposed to 12, 7, and 5�.
We are not aware of any other results for d=5. Comparing
with Ref. �3�, our results for d=2 agree very well, while
those for d=3 are a little different, at the level of about 2,
which may reflect some corrections to scaling.

In Fig. 5 we plot our results for � as a function of d,
together with a smooth curve through the points. It is obvi-
ously desirable to know the dimension, dl, where �=0, but
extrapolation of our data to larger d is very uncertain. How-
ever, it is clear that dl must be significantly greater than 5,
and hence much greater than the its value for finite m, which
is between 2 and 3. It is not possible to test precisely the
claim of Viana �13� that dl=8, because we cannot estimate �
for d close to 8. However, our data do not rule out this
possibility.

FIG. 2. d=3: graph of �E against L with �=−1.04.

FIG. 3. d=4: graph of �E against L with �=−0.67.

FIG. 4. d=5: graph of �E against L with �=−0.37.

FIG. 5. Graph of � against d. The solid line is a smooth curve
through the data. Its extrapolation to d�5 �curve with long dashes�
is, however, very uncertain.
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IV. CONCLUSIONS

We have computed the zero-temperature stiffness expo-
nent � for the vector spin glass in the limit where the spins
have an infinite number of components. We have obtained
better statistics for a larger range of sizes and dimensions
that in previous work �7�. Our results for � agree with those
of Ref. �7� for the dimensions �d=2–4� considered by them,
while the case d=5 was not considered there. The trend in
our data, shown in Fig. 5, indicates that the lower critical
dimension must be significantly larger than 5, the largest

dimension we have been able to study, and may equal 8, as
predicted by Viana �13�, but it is currently not technically
possible to determine � for sufficiently high dimension to test
this claim precisely.
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